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Abstract

In this paper we find the waiting time distribution in the transient domain

and the busy period distribution of the G//G/1 queue. We formulate the

problem as a two dimensional Lindley process and then transform it to a Hilbert

factorization problem. We achieve the solution of the factorization problem for

the GI/R/\,RIG/\ queues, where R is the class of distributions with rational

Laplace transforms. We obtain simple closed form expressions for the Laplace

transforms of the waiting time distribution under FCFS when the system is

initially empty and the busy period distribution. Furthermore, we find closed

form formulcie for the first two moments of the distributions involved.
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1 Introduction

In the first part of this work (Bertsimas and Nakazato [1]) we presented a method to

perform transient and busy period analysis for the MGEi/MCE\i /\ queue, where

MCE is the class of mixed generalized Erlang distributions. Our analysis used

the method of stages combined with the separation of variables and root finding

techniques together with linear and tensor algebra. We found simple closed form

expressions for the Laplace transforms of the queue length and the waiting time

distribution under FCFS when the system is initially empty and the busy period

distribution. In this paper we extend and generalize these results to the G//G/1

queue with arbitrary distributions. We first formulate the problem as a two di-

mensional Lindley process and then transform it to a Hilbert factorization problem.

We are able to solve explicitly the underlying factorization problem for the cases

of GI/R/l and R/G/l queues, where R is the class of distributions with ratio-

nal Laplace transforms. As a result, we find closed form formulae for the Laplace

transforms of the waiting time and busy period distribution.

Formulations of queueing problems as Hilbert factorization problems can be

traced back in Lindley [6], in which the steady state waiting time distribution of

the G//G/I queue is derived via a spectral factorization of the underlying Hilbert

problem. For other examples of the method see Keilson [2,3].

The paper is organized as follows. In the next section, which is central in the

paper we formulate the transient behavior of the CI/C/l queue as a two dimensional

Lindley process, derive the key formula of the transient and busy period dynamics

and then transform it to a Hilbert factorization problem. In Section 3, we solve

the factorization problem for the R/G/l queue, while in Section 4 we achieve its

solution for the GI/R/l queue. In Section 5 we observe how the results of the

previous two sections are in agreement with the known results for the M/G/l and

GI/M/l queues and consistent with the results of Bertsimas and Nakazato [1]. The

final section contains some closing remarks.



2 System Formulation

In this section we formulate the transient behavior of the CI/C/X queue as a two

dimensional Lindley process, derive the key formula of the transient dynamics and

then transform it to a Hilbert factorization problem. Our analysis will focus on the

notion of a busy interval which is defined as the busy period plus an immediately

following idle period. In Subsection 2.1 we define the notation we will use, in Sub-

section 2.2 we derive the key formula for the transient dynamics and in Subsection

2.3 we transform the problem to a Hilbert factorization problem.

2.1 Notation and Assumptions

In this subsection we define the random variables and establish the notation we

are using. We assume that the system is initially idle and the first customer's

arriving time is the forward recurrence interarrival time. Although this assumption

is restrictive for the waiting time distribution, it is not restrictive for the busy period

distribution, since the busy period regenerates.

We first define the random variables we will use as follows:

Xn ' the service time of n th customer.

Tn : the interarrival time between n — 1 th and n th customer.

r„ : the arriving time of n th customer. Note that Tn = ti + ^^=2 '^k-

T : the arriving time of a random customer.

B[ : the duration of a busy interval, i.e. the interval between the initiating epoch

of a busy period and the initiating epoch of the next busy period.

Bp : the duration of a busy period.

W^ : the waiting time in the queue of n th customer.

W^ : the waiting time of a random customer.



We will use the following notation:

a{t) : the interarrival time probability density function (pdf).

q(s) : the Laplace transform of a(i).

J = E[Tn] = — a(0) : the mean interarrival time.

Cj = Va,r[Tn]/ E[Tn]^ ' the squared coefficient of variation of the interarrival time.

a'{t) : the first customer's arriving time pdf (because of our assumption it is the

forward recurrence time of the interarrival time).

a*(s) : the Laplace transform of a*(<), i.e. a'(s) = j(l — a(s)).

b{t) : the service time pdf.

(3[s) : the Laplace transform of 6(().

i = E[Arn] = —P{0) ' the mean service time.

C\ = Var[A'„]/ E[A'„]^ : the squared coefficient of variation of the service time.

p = - ; the traffic intensity.

Slit) : the busy interval pdf.

sp{t) : the busy period pdf.

cr(s) : the Laplace transform of sp{t).

In addition, we define

/(x,y) = ^Pt[W+ <y\T = x]

,.
]^ELiafePr[rn<r,[C<y]

= lim

^E^=iPr[r„<x]
(1)



2.2 Transient Dynamics

In this subsection we derive tlie key formula that describes the transient dynam-

ics of the CI/G/l queue. For notational convinience we enumerate customers by

0, 1, 2, . .
.

, n in the order of arrival. We analyze the case, in which the n th customer

arrives at the busy period initiated by k th customer. We let

r= k + l

and observe (see Figure 1) that if Wn+k < and Wr >Oforr = jfc-|-l...n + Ar—

1

then
k+n

T=k+ l

k+n-\ k+n

Bp = E X. = E {Tr + ^r) = Bl + Wr^+ k- (2)

r=fc r=*+l

Similarly,

if Wr>0 for r = k+l...n + k, then IV;^^,^ = W^+k- (3)

Summarizing, the critical observation is that if Wn+k < 0, then the idle period,

that inunediately follows the busy period Bp, is —Wn+k\ on the other hand, if

Wn+k > 0, then Wn+k is waiting time of it + n th customer. Therefore, if we keep

track of the busy interval B[ and the quantity Wn+k, then we can find both the

busy period and the waiting time from (2) and (3) respectively. For this goal we

now consider the joint densities:

A(x,y) = ^^Pr{Tn<x,^n<y},

U{x,y) = ^-^Pr{rn+k-rk<x,W;^_^.i^<y,Wr>0,r = k+l...n + k},
oxoy

/o(x,y) = 6(x)6(y),



WkH—- Wk.2 -WkM

X 1.+k+1 ^k + 2^ k + 3
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Figure 1: Transient dynamics

where 6{x) is the Dirac delta function. Note that that A(x,y) is independent of u

and /n(x,y) has positive support in y, nonnegative support in i and is independent

oik.

Since r^+k+i-Tk = r^+k-Tk+T^+k+i and IV'^+fc+i = ^V^+kHn+k+i '^^^Vr > 0, r = k+

1 ... n + t + 1 we obtain the recurrence relations:

/o(x,y) = 6{x)6iy)

/i(x,y) = A(x,y)C/(y)

/„+i(x,y) = [/„(i,y)*A(x,y)]t/(y), (4)

where (7(y) is a unit step function and we denote "*" as the 2-dimensional convo-

lution sign that is fn{i,y) * A(x,y) = jT'^o So fn{x -u,y- t;)A(u, n) ducfv. We also



define

rnir,y)= ^^Pr{B[ < x,lV„ + k < y,Wr > 0,r = k + I . . . n + k - l,iy„+fc < 0}.
axay

Note that r„(z,y) has nonpositive support in y and nonnegative support in x and

it is independent of k.

The motivation for the above definitions is that we can express the pdf of the

quantities of interest in terms of the functions r„(z,y). Clearly

n=l

and using (2)

n= \

Using (2) and (3) we obtain in a similar way as before

1 *Q 00

5;(x) = -Pr{5/<x}= / ^r„(x,y)dy, (5)

J -0 00

spix) = —Pr{Bp<x}= ^r„(x-y,y)cfy. (6)
dx J-00 ,

ri(x,y) = A(x,y)(l-f/(y))

rn+i(x,y) = [/n(x,y)*A(x,y)](l-C/(y)). (7)

From (4) and (7) we obtain the key formula for the G//G/1 transient dynamics in

real time:

/n+i(-c, y) + r„+i(x, y) = /„(r, y) A(x, y). (8)

2.3 Formulation as a Hilbert Problem

In this subsection we will work in the transform domain, where the solution of (8) is

equivalent to a Hilbert factorization problem. We introduce the Laplace transforms:

^+{s,u)= / e-"-v^/„(x,y)(fx<iy,

/O yoo •»

/ e-'^-^v^r^x.yjcfxdy.
-00 -'0 „,n=l



Note that
/CO fOO

-co ^0

The superscript + is employed to designate that $+(5,0;) is analytic in the right

half of the complex w plane. Similarly, the superscript — designates that p~{s,io)

is analytic in the left half of the complex uj plane.

By taking transforms in (8) we obtain

$•"(5,0;) + p"(s,w) = 1 + a(s -a;)/3(w)<J>''"(s,w),

or equivalently

<I>+(s,w)(l-a(s-w)/?(a;)) = l-p-{s,u;). (9)

(9) is a Hilbert factorization problem in uj with fixed s, where

$•(5,^) is analytic in Re(u;) > and Re(s) >

p~[s,u)) is analytic in Re(w) < and Re(s) > 0.

The following additional boundary conditions complete the description of the fac-

torization problem:

a{0)<m (^P<1)

Once p {s,lli) is found, we can use (6) to obtain the Laplace transform of the busy

period:

A f°°
a{s)= e-'^sp{x)dx = p-{s,s), (10)

Jo

and similarly from (5)

r e-'^si{x)dx = p-{s,0).
Jo

The transform of the conditional waiting time (transform variable ui) in the

queue of a customer whose arriving time (transform variable s) is given, can be



found from $"''(s,a;) as follows. From (1) we find that (the convolution "*"
is with

respect to x)

/(r,y) = |-Pr[PF+ <y|r = x]
oy

= -a-(x)*^s'/>(x)*^/„(x,y), (11)

r=0 n=0

since we assumed that the arriving time of the first customer is the forward recur-

rence interarrival time and thus from the renewal theorem (or my simply taking

Laplace transforms) we have

oo oo

dx
-iX:Pr[r„<z] = a-(x)*^a(")(^) = A,

n=l n=0

and moreover

i2 oo

-^ J2 Pr[rn < X, w;t <y] = a'{x) * J2 *'/'(^) * E /"(^' y)-
^^*^y n=l r=0 n=0

By defining
roo f-co

^s,u;)=
/ / e-'^-^yf{x,y)dxdy
Jo Jo

and taking transforms in (11) we obtain that

^(^-) = i(r^^^^(--)
= lllf^. (12)

s$+(s,0) ^
'

Therefore, we can express both the transforms of the busy period and the wait-

ing time distribution in terms of <I>"'"(s,a;) and p~{s,u>). As a result, we reduced

the problem of obtaining the transforms of the busy period and the waiting time

distribution to the solution of the Hilbert problem (9).

In its full generality, i.e., with completely arbitrary interarrival and service time

distributions, it is not known whether the Hilbert problem (9) has a closed form

solution. In special cases, however, when one of the distributions has a rational

Laplace transform, then we can solve the factorization problem in closed form. In

the next sections we solve (9) for the R/C/l and CI/R/l respectively, where R is

the class of distributions with rational Laplace transforms.



3 The Solution of the Hilbert Problem for the R/G/l

Queue

In this case a{s) — "'^ (l ,
where a£)(s) is a monic polynomial in s of degree L and

afyj{s) is a polynomial of degree less than L.

For fixed s with Re(s) > 0, let z — ir(s), (r = 1 . . . L) be the L roots of the

equation:

a(s-z)/?(r)= 1, Re(2)>0. (13)

The proof of this follows along the lines of claim 3 of [1]. Once the number of roots

is established through Rouche's theorem, we simply follow the methods pioneered

by Keilson [3,2]. Now, (9) can be written as

<I>+(s,a;) l-^-(s,w)

aC)(3-u<)-0!jv(j-u;)/3(ui) a£i(3-u/)

(14)

By observing that the expression in the rhs of the equation (14) is analytic for

Re(ai) > and the expression in the Ihs of the the equation (14) is analytic for

Re(a;) < and using Liouville's theorem we conclude that both expressions should

be equal to a function of s From the boundary conditions of (9) we easily find that

the function is a constant function 1. To complete Liouville's theorem, we need the

following proposition.

Proposition 1 The ezpnssions tn both sides of the equation (1 ^) are bounded.

Proof

Let Re(s) > 0. For the Ihs, with Re(u;) > 0, it is easily seen (since the zeros cancel

out) that the denominator is bounded away from 0, and thus for some f > 0;

nLi(x.(5)-u>)

aois - u^) - ocn{s - ui)(3[Lj)

We then check that the numerator is also bounded;

|a)+(s,u;)| < $+(0,0)

10

> e.



TTn Uo -'0

DO fc+ n

< 1 + E ^'•i E ^^ > 0}

n=l r=k+l

Since p < 1 £'[4r] < (Vr). As a result, applying the Chernoff bound, we obtain

that there exists a constant 6 < 1 such that -P'"{IIr=?+i ^r > 0} < i5", and thus

|<I>"''(S,W)| < < ^DO.

\ —

In an analogous way the denominator of the rhs, with Re(u;) < 0, is bounded away

from 0, i.e., for some f > 0;

nL,(^r(5)-a;)
> e.

In addition the boundness of the numerator of the rhs is seen as follows;

\\-p-{s,^)\ < \ + \p-{s,u)\

< l+/>-(0,0) = l + a(0) = 2

< oo. a

Thus by applying Liouville 's theorem we conclude that the unique solution to

the Hilbert factorization problem (9) is:

<i>^{s,u) =

p (s,^) = I
-

Hence we get from (12)

<I>(s,u;) =

and from (10)

aD{s — w) — a;v(s - w)/:^(w)

nL,(^r(s)-u;)

ao^s -oj)

s{aD{s - w) - ayv(s -w)/?(w)) ;^Jj iris)n
Xr{s) -U!

aD(0) ^Vi

(15)

(16)

11



The reward of our analysis is a simple closed form expression for the transform

of the busy period and waiting time distribution. Moreover, we can find closed

form expressions for the first two moments of the waiting time and busy period

distribution by differentiating the corresponding transforms. The following formu-

lae were derived using the symbolic differentiation routine of the software package

Mathematica on a Macintosh II computer.

L w -« C7W

s V^ Xr{s) l-a(s) aois)^

f)2

e-'^E[{W+)^\r = x]dx^ lim —-<t.(s,u;)
. — Ou)^

is)

-I- ^Z^r=l JTpy -t- l-a(3) ^^

d -
^-^

E[flp] = -lim-a(s) = - ^—_nx,(0)

Var[Sp] = lim-^log((T(5))
s — as

^ P y a(-z.(0))/?(x.(Q))
n^fO)

(1 - p)aD(O) ^t1 Q(-x,(0))^(i-.(0)) - q(-x,(0))/:?(x,(o)) .y
'^

-
(i-pfA.„(o) n ''(") -

i(i-rt„„(o,j n '^(0)

.

where w, used ^(, -,,(,)) = „,._„,.,g—l^lg'^^',,!.!,,,.,,

and ^(s - Xr(s)) = a(s - Xris))P{xr{s)) x

a{3 - Xr{s))a(, - Xr{3))3(rr{3))^-26{3 - Xr(3))^ i3{lA 3)f + 6(, - Xrjs))^ l3(jCrl 3))0{lr(s))

(a{3 - Tr{3))0{Tr(3))-a{3 - X. (5))/3(r. (5)
))

The formula for the first two moments of the busy period was simplified using the

observation that there exists a unique root such that xi{0) = (see Keilson [4]).

12



As an additional check of the algebra we can verify that for the M/G/l queue, i.e.

L = 1 the formula for E[Bp] becomes E[Bp] = —^. Finally, note that the roots

Jr(0) are precisely the roots that appear in the steady solution of the R/G/l queue.

4 The Solution of the Hilbert Problem for the GI/R/l

Queue

In this case f3{s) = x4f) , where I3d{s) is a monic polynomial in s of degree M and

/3jv(s) is a polynomial of degree less than M.

As in the previous section, for fixed s with Re(s) > 0, let z = Xr{s) (r =: 1 . . . A/)

be the M roots of the equation:

a(s-z)p{z) = l, Re{z)<0.

The unique solution to the Hilbert problem can be found in a similar way as in the

previous section to be:

<I>+(s,u') =
rAf

n;^4,(c.-x.(s))

Note that the connection with the results of the previous section in the case of

R/R/l is established by noticing that

L+.\f

(-1)^ n '^'^ ~ -^rls)) = o:d{s -lj)I3d{u)) -aA'(s-a;)/?Af(a)).

r=l

Hence we get from (10) and (12) that

*(.,.)= Miln_^ (17)

As an accuracy check we can easily check that (17) and (18) are identical with the

results for the MGEi/MCE\f/\ queue obtained in part I of this study (Bertsimas

13



and Nakazato [1]). As in the previous section we can find closed form formulae for

the moments of the distributions involved as follows:

/•oo
1 / 1

Jo s \fr{ Xt{

E[5,] = (zi)!:M2)fi
1

Var[5p] = \yZ12_±l^Y.(-1)'''/?d(0) ^ a(-rfc(0))/?(x,(0))

+

^ fct^
x,(0){a(-x,(0))/?(x,(0)) - a(-x,(0))/?(xfc(0))}

(-l)'^^(l + Ci)%(0) /?d(0)\ T^ 1 //?D(0)V-i^ 1

^ ) L\ ^r{0) V M V* M
5 The M/G/1 and GI/M/l Queues

In this section we verify and generalize well known results for the GI/M/l and

M/G/1 queues.

For the CI/M/l it is known (Takacs [7]) that (t{s) = ^^^~^, where w{s) =

a{s — xi(s)). By letting A/ = 1 in (18) and observing that w{s)f3{xi[s)) = 1, i.e.

xi(s) = ^{w{s) — 1), we find the same expression.

For the M/G/1 queue it is well known (see Kleinrock [5]) that the busy period

satisfies cr(s) = [3(s + A — A<7(s)). In order to see how we can derive this from (16)

we observe that from (16) cr[s) = 1 + Iz^ilii^ from where xi(s) = s + X — Xcr{s).

Since xi(s) satisfies from (13)

a(s - xi{s))f3{x,{s)) = -— —f3{s + A - Xa{s)) = 1,
A + s - xi(s)

we can now easily derive the desired relation a{s) — /?(s + A — A<t(s)).

The time-dependent behavior of the waiting time can be expressed in terms of

cr(^s) eis follows:

1 S-W + A(1-«t(s))
$(s,w) =

s + A(I-<7(5))s-w + A(1-a?(w))

14



This is a solution to the well known Takacs integrodifferential equation (see Klein-

rock [5] or Takacs [8]).

6 Concluding Remarks

In this paper we attempted to demonstrate the power of direct probabilistic ar-

guments for the waiting time distribution in the transient domain and the busy

period distribution for the G//G/1 queue. We found closed form expressions for

the transforms and the first two moments of these distributions. Algorithmically our

approach offers a method for finding these distributions in the time domain through

the numerical inversion of the Laplace transforms. In Bertsimas and Nakazato [1]

we reported numerical results for finding numerically the busy period, the tran-

sient queue length and the waiting time distributions in a MGE/MGE/l queue,

by inverting numerically the corresponding Laplace transforms.
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